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Measuring People’s Thoughts 
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Patient-Centered Care
 2001 IOM – Crossing the Quality Chasm
 National priority in the U.S.A
 Patient-reported outcome measures (PROMs)
 NIH – PROMIS®
 FDA
 NQF
 PCORI
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PROMs Example
 Health-related quality of life (HRQol)
 Neuro-QoL

 Depression
 Center for epidemiological studies depression scale 

(CES-D & CES-D-10)
 Patient health questionnaire-9 (PHQ-9)

 Cancer
 PROMIS-Fatigue
 PROMIS-Pain

 Etc.
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Challenges
 Lengthy process
 Small populations or rare diseases
 Limited resources
 Psychometric soundness
 Reliability - consistency
 Validity - accuracy
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Reliability
 The extent to which a scale or measure yields 

reproducible and consistent results 
 Goal: “score” or “value” reliability using instruments 

designed to measure the patient’s or caregiver’s 
experience under various treatment and/or care 
conditions

 Estimates of reliability 
 Support the dissemination and use of new 

instruments in health research 
 Provide one piece of evidence of the psychometric 

adequacy of an instrument

6



The More Items The Better?

Wainer, H. and Feinberg, R. (2015) 
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Validity
 The extent to which an instrument measures 

what it is intended to measure and that it can 
be useful for its intended purpose
 3 types:
 Content validity
 Construct validity
 Predictive validity
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Construct Validity

Verbal

1

X1 X2 X3

Math
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Evidence of Construct Validity
 Classical approach: CFA
 Separate content and construct validity analyses
 Large sample size requirement
 Models ordinal data as continuous
 Ordinal CFA (Mplus; R lavaan)

 Bayesian approach: OBID
 Seamlessly integrates content and construct validity 

analyses
 Overcomes small sample size issue
 Models ordinal data as ordinal
 Utilizes fast, reliable, and free software
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Study Aims
 Aim 1: to test Ordinal Bayesian Instrument Development 

(OBID) by comparing its performance to classical 
instrument development with exact estimation 
procedures, using simulation data

 Aim 2: to test OBID across a variety of patient 
populations

 Aim 3: to disseminate Classical and Bayesian Instrument 
Development (CBID) software for evaluation by 
investigators in other research communities
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OBID
 Extension of
 Gajewski et al. (2012): approximate equivalency of 

relevance scale vs. correlation scale in establishing 
content validity

 Gajewski et al. (2013): IACCV
 Jiang et al. (2014): BID

 Bayesian IRT with a probit link
 Prior elicitation from content experts’ data or 

reference data
 WinBUGS

 MCMCpack (Martin, Quinn and Park, 2011)
 MCMCordfactanal function
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Expert Model

 ݇ ൌ 1,… , ,ܭ ݆ ൌ 1,… , ܲ
 ௝௞: kth expert’s latent item-to-domain correlation for the jthߩ item
  ௝: item-to-domain correlation based on pooled information fromߩ

all experts
 Fisher’s transformation:	

௝ߤ ൌ ݃ ௝ߩ ൌ ଵ
ଶ
݃݋݈ ଵାఘೕ

ଵିఘೕ
~	ܰ ݃ ଴௝ߩ ,

ଵ
௡బೕ

 Hierarchical model:  
݃ ௝௞ߩ ൌ ݃ ௝ߩ ൅ ௝݁௞;	 ௝݁௞	~	ܰሺ0, ଶሻߪ
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Participant Model
௜௝ݕ ൌ ܿ if ݕ௜௝∗ ∈ ௝ܶ ௖ିଵ , ௝ܶ௖

∗௜௝ݕ ൌ ௝ߙ ൅ߣ௝ ௜݂ ൅ ;	௜௝ߝ 	 ௜݂~	ܰ 0,1 , ,ܰሺ0	௜௝~ߝ 1ሻ
݅ ൌ 1,… ,ܰ, ݆ ൌ 1,… , ܲ, ܿ ൌ 1,… , ௝ܥ
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Participant Model Cont.
 Likelihood

ܮ ∗ݕ ,ߙ ,ߣ ݂ ൌෑෑܰሺݕ௜௝∗
௉

௝ୀଵ

௝ߙ| ൅ ௝ߣ ௜݂

ே

௜ୀଵ

	 , 1ሻ

 Priors

ܰ	~	௝ߙ 0,1 ܰ	~	௝ߣ	,
݌ݔ݁ ௝ߤ2 െ 1
௝ሻߤሺ	݌ݔ2݁

,
݌ݔ݁ ௝ߤ2 ൅ 1 ଶ

4݊଴௝ ݌ݔ݁ ௝ߤ2

ܰ	~	௝ߤ ݃ ଴௝ߩ ,
1
݊଴௝

, ݊଴௝ ൌ ܭ5
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Aim 1: Simulation Study
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Simulation Parameters
 Assume unidimensional model

 144 simulation scenarios for each type of expert ߩ଴
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N (Sample size) 50, 100, 200, 500

P (# of items) 4, 6, 9

C (# of response options) 2, 5, 7

K (# of experts) 2, 3, 6, 16

True ்ߩ Mixture of 0.3, 0.5, 0.7

Unbiased Experts ߩ଴ Same as True ்ߩ

Moderately Biased Experts ߩ଴ Mixture of 0.4, 0.6, 0.8

Highly Biased Experts ߩ଴ Mixture of 0.65, 0.75, 0.85



Simulation Strategy
1. Simulate standardized ∗௜௝ݖ based on the classical factor 

model and convert to ݕ௜௝∗

∗௜௝ݖ ൌ ௝்ߩ ௜݂
் ൅ ݁௜௝; 	 ௜்݂~	ܰ 0,1 , 	݁௜௝	~	ܰ 0, 1 െ ௝்ߩ

ଶ

௝ߣ ൌ
௝ߩ

1 െ ௝ଶߩ
௝ߩ	→	 ൌ

௝ߣ

1 ൅ ௝ଶߣ

2. Convert ݕ௜௝∗ to ordinal responses ݕ௜௝ using percentile-
based cut points

௜௝ݕ ൌ ܿ if ݕ௜௝∗ ∈ ௝ܶ ௖ିଵ , ௝ܶ௖ 	
 C=2: 50th percentile of standard normal

 C>2: ଵ
஼
, … , ஼ିଵ

஼
th percentile of standard normal
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Simulation Strategy Cont.
3. Define priors for the IRT model parameters
4. Select tuning parameters to ensure 20% - 50% 

acceptance rate (trial and error)
 N=50: 1.0
 N=100: 0.7
 N=200: 0.5
 N=500: 0.3

5. Fit IRT model via MCMCpack on the simulated datasets 
and estimate ߩ௝

6. Fit ordinal CFA model via lavaan on the simulated 
datasets and estimate	ߩ௝

7. Perform 100 simulations for each of the scenarios 
defined by the simulation parameters
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MSE & Bias
  OBID posterior mean or CFA parameter estimate	ሻ:ݏො௝ሺߩ

of sth iteration for the jth item

 ௝ߩ̅ ൌ
∑ ఘෝೕሺ௦ሻభబబ
ೞసభ
ଵ଴଴

 ܧܵܯ ො௝ߩ ൌ
∑ ఘෝೕ ௦ ିఘೕ

೅ మభబబ
ೞసభ

ଵ଴଴

 ܧܵܯ ൌ
∑ ெௌா ఘෝೕು
ೕసభ

௉
	

 ,ො௝ߩሺݏܽ݅ܤ ௝்ሻߩ
ଶ ൌ ௝ߩ̅ െ ௝்ߩ

ଶ

 ଶݏܽ݅ܤ ൌ
∑ ஻௜௔௦ሺఘෝೕ,ఘೕ

೅ሻ
మು

ೕసభ

௉
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MSE: Unbiased
 ଴=(0.3,0.5,0.7,0.7,0.3,0.5)ߩ
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MSE: Moderately Biased
 ଴=(0.4,0.6,0.8,0.8,0.4,0.6)ߩ
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MSE: Highly Biased
 ଴=(0.65,0.75,0.85,0.85,0.65,0.75)ߩ
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Summary
 Overall, OBID outperforms ordinal CFA
 Use highly biased experts with caution 

 Most superior when
 Smaller sample size: 50 and 100
 Binary response options

 Trade-off: larger bias, smaller MSEs
 6 experts will be sufficient (3 if highly biased)
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Discussion: General Prior
 Lack of appropriate content information 
 Reliable and relevant external (reference) data 

available
 Not necessarily experts
 Down weigh the prior sample size

 Example: Use adult population as prior for 
pediatric population PROMs development
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Aim 2: Real Data Application
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Model Comparison
 Bayesian model comparison
 Informative vs. flat prior
 Predictive model accuracy

 Cross-validation
 DIC: conditioning on posterior mean—pointwise 

measure
 WAIC: averaging over posterior distribution—fully 

Bayesian 
 Bayesian LOO-CV: asymptotically equal to WAIC
 Applicable for small n
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LOO-CV Method

28

Training set

Holdout set

࢟௜

All data

ି௜

௣௢௦௧ሺି௜ሻ ି௜

Evaluation 
function: 

௜ ௜

௣௥௘ௗ ௜ ି௜



LOO-CV Method Cont.
 CV posterior predictive evaluation

௣௢௦௧ܧ ି௜ 	 ܽ ࢟௜, ,ࣂ ௜ࢌ ൌ නܽ ࢟௜, ,ࣂ ௜ࢌ ܲ௣௢௦௧ ି௜ ,ࣂ ௜ି࢟|ࢌ ࢌ݀ࣂ݀

 CV posterior predictive density

 Let ܽ ࢟௜, ,ࣂ ௜ࢌ ൌ ௣ܲ௥௘ௗ ࢟௜|ࣂ, ௜ࢌ

௣ܲ௥௘ௗ ࢟௜|࢟ି௜ ൌ න ௣ܲ௥௘ௗ ࢟௜|ࣂ, ௜ࢌ ௣ܲ௢௦௧ሺି௜ሻ ,ࣂ ௜ି࢟|ࢌ 				ࢌ݀ࣂ݀

ൎ
1
ܵ෍ ௣ܲ௥௘ௗ ࢟௜ ,௦ࣂ ௜௦ࢌ

ௌ

௦ୀଵ
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Recall: Participant Model
௜௝ݕ ൌ ܿ if ݕ௜௝∗ ∈ ௝ܶ ௖ିଵ , ௝ܶ௖

∗௜௝ݕ ൌ ௝ߙ ൅ߣ௝ ௜݂ ൅ ;	௜௝ߝ 	 ௜݂~	ܰ 0,1 , ,ܰሺ0	௜௝~ߝ 1ሻ
݅ ൌ 1,… ,ܰ, ݆ ൌ 1,… , ܲ, ܿ ൌ 1,… , ௝ܥ

 Likelihood

ܮ ∗ݕ ,ߙ ,ߣ ݂ ൌෑෑܰሺݕ௜௝∗
௉

௝ୀଵ

௝ߙ| ൅ ௝ߣ ௜݂

ே

௜ୀଵ

	 , 1ሻ
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LOO-CV Method Cont.

 Predictive density

௣ܲ௥௘ௗ ࢟௜ ,௦ࢻ ௦ࣅ ൌෑන ܰ
ೕ்
ೞ 

ೕ்
ೞ

∗௜௝ݕ ௝௦ ൅ߙ ௝௦ߣ ௜݂
௦, 1 ∗௜௝ݕ݀

௉

௝ୀଵ

 CV information criterion (CVIC)

ܥܫܸܥ ൌ െ2෍ ݃݋݈ ௣ܲ௥௘ௗ ࢟௜|࢟ି௜
ே

௜ୀଵ
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MCMC Tuning Parameter
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PAMS Study Background
 Breast cancer related death ranks 2nd among cancer 

deaths for women in the U.S. 
 Routine utilization of mammography
 Most widely recommended method for breast cancer 

screening
 Offers a chance of early detection—critical for overall 

survival
 Influenced by patients’ decision
 Prior experiences and satisfaction with 

mammography
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PAMS Short-Form Survey
 Patient assessment of mammography services (PAMS) 

survey
 Single factor, 7 items
 5-point Likert scale: 1-poor to 5-excellent
 Four patient populations
 American Indian: N=299
 Black: N=34
 Hispanic: N=36
 Non-Hispanic White: N=2,768

 6 subject experts consulted
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PAMS LOO-CV Results
 Recoding of data
 Very few respondents selecting “1=poor, 2=fair, 

3=good” response options
 Hispanic & Black: combined poor to good responses
 American Indian: combined poor to fair responses

35

Hispanic Black American 
Indian

Informative 
Prior 2154.291 2014.279 36068.882

Flat Prior 2781.639 2489.856 39325.667



PAMS LOO-CV Results Cont.
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 Evaluation of subject expert bias



Aim 3: Software Dissemination
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CBID Software
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CBID Software - Classical
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CBID Software - Bayesian
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Questions and Discussions
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